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Abstract
Recently, in the language testing field, automatic speech recog-
nition (ASR) technology has been used to automatically score
speaking tests. This paper investigates the impact of audio
quality on ASR-based automatic speaking assessment. Using
the read speech data in the International English Speaking Test
(IEST) practice test, we annotated audio quality and compared
scores rated by humans, speech recognition accuracy, and the
quality of features used for the automatic assessment under high
and low audio quality conditions. Our investigation suggests
that human raters can cope with low-quality audio files well, but
speech recognition and the features extracted for the automatic
assessment perform worse on the low audio quality condition.

1. Introduction
Speaking proficiency is an important component of the mea-
surement of language skills. Speaking tests have been used
in well-known standardized language tests, e.g., TOEFL and
IELTS. In these tests, test takers’ speech is recorded and scored
by human raters. In the past decade, automatic speech recog-
nition (ASR) has been used to automatically score speaking
tests [1, 2, 3, 4]. For example, Ordinate provided a telephone-
based speaking test, PhonePass [1]. Educational Testing Ser-
vice (ETS) has been conducting research on scoring non-native
spontaneous speech [5]. This research has resulted in a product,

SpeechRater
SM

[6], which was used to automatically score low-
stakes test responses in the online practice test for TOEFL R©.
Recently, Pearson made public plans for a new test, Pearson
Test of English (PTE), to be on the market in Fall of 2009.
PTE test is a fully automated test used for high-stakes purposes,
i.e., admitting international students into English-medium col-
leges and universities. PTE will use ASR to automatically score
speaking responses [7].

Compared to the traditional way of manually scoring
speech by human raters, the ASR-based automatic speech as-
sessment is cheaper, faster, and less influenced by raters’ un-
controlled variations, e.g., changes in emotion. However, ASR
is still worse than human hearing in many ways. For example,
ASR systems are less robust than human beings when facing
audio files with a poor quality. Unfortunately, speech responses
collected in speaking tests may have low quality for various rea-
sons, e.g., using low quality microphones, setting up record-
ing software incorrectly, and interferences from other test tak-
ers. Therefore, low quality audio files challenge the ASR-based
speaking scoring system.

As described in Section 2, some previous research investi-
gated the impact of audio quality on human raters and on accu-
racy of ASR. However, an investigation of the impact of audio
quality on the ASR-based speaking assessment is still missing.

In this paper, we report an investigation on this topic.
The remainder of paper is organized as follows: Section 2

describes the related research; Section 3 describes the data used
in our experiment and the audio quality annotation; Section 4
reports on the speech recognizer used in our experiment and the
extraction of speech features; Section 5 reports on our experi-
mental results; Section 6 discusses our findings.

2. Related Work
McNamara and Lumley investigated the effect of degree of au-
dibility of audio on human scoring [8]. On 142 audio tapes, they
annotated the degree of audibility and found 61% of tapes were
perceived as perfectly audible and the remaining 39% of tapes
were perceived as imperfectly audible. They found that the
tapes perceived as imperfectly audible were rated more harshly
than if these tapes were judged to be perfectly audible. Accord-
ingly, they gave several suggestions: (1) care needs to be taken
to ensure that recordings are of the highest quality and (2) audio
quality should be considered as a factor in the scoring process
to neutralize its impact.

The performance of most current ASR systems degrades
significantly when environmental noise occurs. Such perfor-
mance degradation is mainly caused by mis-matches in training
and operating environments [9]. Lippmann compared speech
recognition done by human and machine [10]. He found that
error rates of machines are often more than an order of mag-
nitude greater than those of humans for quiet, wide-band, read
speech. Machine performance degrades further below that of
humans in noise, with channel variability, and for spontaneous
speech.

For speaking tests, some recorded speaking responses may
have low audio quality. For example, for internet-based practice
tests, test takers use their own computers and microphones to
record speech responses. Improper set-up of recording devices
or using microphones with a poor quality cause low-quality au-
dio samples. For tests held in testing centers, overlapped speech
from other test-takers may also cause low-quality audio sam-
ples. Because poor audio quality challenges ASR systems, with
an expanding use of ASR-based speaking assessment in lan-
guage testing, we need investigate audio quality’s impact on the
ASR-based speaking assessment.

3. Data and Audio Quality Annotation
The International English Speaking Test (IEST) measures En-
glish oral communication skills in international business and
professional settings. To help test-takers better prepare for this
test, An on-line practice test that uses retired IEST Speaking test
material is provided. Currently, this test is scored by trained hu-
man raters.
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Figure 1: A comparison of spectrograms of two audio portions
based on identical read content but with poor quality (on the
top) and satisfactory quality (on the bottom)

The IEST speaking test includes reading-aloud tasks that
require test-takers to read a short paragraph of 40-60 words
aloud. The reading materials include announcements, adver-
tisements, introductions, and so on. The read-aloud tasks are
rated analytically on pronunciation and intonation on a 3-point
scale.

The audio data used in our experiment were collected from
previous IEST practice tests. From four test forms (correspond-
ing to four different reading material), 1, 065 audio samples
were obtained. All these audios were scored by human raters.

Some subjective and objective standards (e.g., PESQ [11])
have been designed to rate audio quality for measuring the fi-
delity of synthesized speech and the effect of speech enhance-
ment. However, these standards do not fit our audio quality
annotation task. One of the reasons is that these standards focus
on differentiating subtle changes in audio quality, which is not
the focus of our audio quality annotation. In addition, rating
audio quality by following these standards requires using spe-
cial equipment and collecting reference sounds. These are not
available in our test assessment scenario. Therefore, we used
a simple binary coding method designed based on our observa-
tion of the IEST data.

We rated audio quality as satisfactory and poor. The au-
dio file rated as satisfactory has no or a few of problems, e.g.,
clipping, background noise, too soft or too loud sounds, etc, in
recording. In contrast, the audio file rated as poor has problems
in recording. Figure 1 displays spectrograms of two audio por-
tions based on identical read content but with different audio
quality ratings. Noise in the poor audio smears high frequency
components of the audio signal and tends to negatively impact
speech recognition that uses these high frequency components.

Two native American English speakers annotated these
1065 audio samples after their coding standards were cali-
brated. On the 200 audio files that were randomly selected

from the data set, the two raters conducted a parallel annota-
tion. Their annotations have an agreement of 90.00% and a Co-
hen’s κ of 0.618. This indicates that an acceptable annotation
consistency can be achieved between human raters. The author
reviewed some of the two raters’ annotations and found that one
rater who had experience on audio quality rating before had a
more accurate annotation. Therefore, on the kappa set, we used
the annotation results provided by this rater. Among 1065 audio
files, 938 files were rated as satisfactory and 127 files (11.92%)
were rated as poor.

4. Speech Recognition and Feature
Extraction

4.1. Speech recognition

As described in [12], a speech recognizer was used in recogniz-
ing speech and in forced aligning speech according to its hy-
potheses. Because the amount of read speech data from the
IEST practice test is limited, we used external data resources
to expand the data used for acoustic model (AM) and language
model (LM) training.

Two different AMs were used in the recognition and forced
alignment steps, respectively. The AM used in the recogni-
tion was trained on about 30 hours of non-native speech from
the TOEFL R©Practice Online (TPO) corpus [12]. Building
on this recognizer, an MAP AM adaptation was conducted
on the read data to reflect the phonetic patterns of IEST read
speech. Because the content of the reading-aloud responses
was constrained, a dictionary (with roughly 2,000 words) con-
taining frequently used English words and words appearing in
the reading-aloud passages was used. The LM was built as
follows: a generic reading LM was trained on the Broadcast
News (BN) corpus, which contains hundreds of hours of broad-
cast news read by anchors. Then, the LM trained on the BN
corpus (LMBN ) was interpolated with the LM trained on the
reading-aloud items (LMRead) according to a weight setting of
0.9 ∗LMBN + 0.1 ∗LMRead to be the LM used in the reading
specific recognizer.

The AM used in the forced alignment was trained on na-
tive speech and high-scored non-native speech data. It was
trained as follows: starting from a generic recognizer, which
was trained on a large and varied native speech corpus, we
adapted the AM using MAP adaptation on a corpus containing
about 2, 000 responses with high scores in previous TPO tests
and the TOEFL R©Native Speaker Study [12]. Ideally, the AM
used in the forced alignment should be trained on read speech
data rather than spontaneous speech data. This is in our future
plan since the IEST read speech we have collected from native
speakers is currently very limited.

4.2. Assessment features extraction

A construct is a set of knowledge, skills, and abilities measured
by a test. The construct of the speaking test is embodied in the
rubrics that human raters use to score the test. It generally con-
sists of three key categories: delivery, language use, and topic
development. Language use refers to the range, complexity, and
precision of vocabulary and grammar use. Topic development
refers to the coherence and fullness of the response. In practice,
most of ASR-based speech assessment systems focus on the
delivery given the challenge of recognizing non-native speech.
The delivery in turn can be measured on four dimensions: flu-
ency, intonation, rhythm, and pronunciation. For IEST read test,



since the speaking content is provided, the topic development
category is not intended to be measured. For language use cat-
egory, some low-scored test takers may not know some words
shown in the reading passage. So, this category can be partially
measured.

We extracted the following two types of features, includ-
ing (1) speech features based on the speech recognition output
as described in [13] and (2) pronunciation features that indicate
the quality of phonemes and phoneme durations [12]. Among
all extracted features, we selected 6 features that were found
to be predictive of speaking proficiency. Note that our selected
features were generally used for assessing spontaneous speech.
Therefore, our investigation done on read speech data can be
generalized to spontaneous speech. In addition, some features
specific for read speech, e.g., features tightly related to word
accuracy, were not used, since the audio quality’s impacts on
these features can be derived from the impacts on the recogni-
tion performance. Table 1 lists names, dimensions, categories
in the assessment construct, as well as descriptions of these fea-
tures. Details of computing these features can refer to [13, 12].

feature dimension category description
wpsec fluency delivery word per second

(speaking rate)
tpsec fluency &

vocabulary
diversity

delivery &
language use

unique words nor-
malized by total
word duration

amscore pronunciation delivery acoustic model
score from speech
recognition

lmscore gramatical
accuracy

language use language model
score

L6 pronunciation delivery average likelihood
per second normal-
ized by the rate of
speech

S̄n pronunciation delivery average normalized
vowel duration
shifts

Table 1: A list of speech features used in our experiments

5. Experiments
5.1. Research questions

We intend to answer the following research questions:

• Does audio quality impact human raters’ performance?

• Does audio quality impact speech recognition accuracy?

• Does audio quality impact the speech features’ predictive
ability for assessing speaking proficiency?

On the IEST read data, we used the speech recognizer de-
scribed in Section 4.1 to recognize all audio files. Then, accord-
ing to their reference texts (reading content), word accuracy was
measured. The word accuracy (wacc) is computed as

wacc =
1

2
× (

c

c+ s+ d
+

c

c+ s+ i
)× 100,

where c = #correct, s = #substitution, d = #deletion,
and i = #insertion. By giving equal weights to the refer-
ence and ASR hypothesis, the wacc is unbiased to insertions
or deletions. Next, we extracted features for speaking assess-
ment according to the methods described in Section 4.2. Based

on two analytic scores provided in the IEST data set, i.e., pro-
nunciation score (pS) and intonation score (iS), an overall score
was derived as the average of these two scores ((pS + iS)/2)).
Finally we conducted statistical analyses to answer these three
research questions, using human scores, the recognition results,
and the extracted features.

5.2. Results

AQ=1 (N=938) range mean std.
pS [1-3] 2.25 0.649
iS [1-3] 2.09 0.624

score [1-3] 2.17 0.543
AQ=0 (N=127) range mean std.

pS [1-3] 2.15 0.668
iS [1-3] 2.01 0.649

score [1-3] 2.08 0.561

Table 2: Descriptive statistics of human scores under two audio
quality conditions.

First, we compared human scores (pS, iS, and score) on au-
dio files with different audio quality ratings. Descriptive statis-
tics (including mean and standard deviation) of human scores
under satisfactory and poor audio quality conditions were re-
ported in Table 2. Variations of human scores have no notable
difference under these two audio quality conditions. A follow-
ing t-test confirms this finding. As reported in Table 3, for each
kind of human score, there was no significant difference be-
tween two audio quality conditions. However, for the score, the
p-value of the significance (0.079) is quite close to the threshold
indicating a significant impact (0.05). This suggests that human
scoring process is influenced by speech responses’ audio qual-
ity. However, on our data, such influence is not statistically
significant.

value t df Sig. (2-tailed)
pS -1.621 159.951 0.107
iS -1.390 159.240 0.166

score -1.767 159.554 0.079

Table 3: t-test of human scores under two audio quality condi-
tions.

Next, we compared means of word accuracy under two au-
dio quality conditions using t-test. The word accuracy on the
satisfactory sound condition (M=84.69, SD=10.64) was signif-
icantly higher than the word accuracy on the poor sound con-
dition (M=74.35, SD=15.06) according to a t-test (t(1063) =
−10.645, p = 0.00).

At last, we investigated whether such recognition accuracy
drop caused by low-quality sounds impacts the speech features’
predictive ability for assessing speaking proficiency or not. To
answer this question, we compared quality of the extracted
speech features under these two audio quality conditions. A
widely used metric for measuring feature quality is the Pear-
son correlation (r) computed between the features and human
scores. In our experiment, we will use the absolute value of
Pearson correlation with the overall score (|r|) to evaluate the
features.

Table 4 compares |r|s between each feature to human score
under two audio quality conditions. We can find that except
S̄n and tpsec features, |r|s of wpsec, amscore, lmscore, and L6



greatly decrease on audio files with poor audio quality com-
pared to audio files with satisfactory quality.

feature |r|AQ=0 |r|AQ=1

wpsec 0.19 0.28
tpsec 0.33 0.35

amscore 0.13 0.27
lmscore 0.23 0.31

L6 0.008 0.1
S̄n 0.097 0.077

Table 4: Comparison of |r| between features to score under two
audio quality conditions

The |r| reduction from satisfactory audio to poor audio
suggests a potential performance drop for the automatic assess-
ment. To further investigate each feature’s discriminative ability
on prediction of human rated scores, we conducted a one-way
between-subjects ANOVA to compare the effect of speaking
skill level (according to averaged human scores) on speech fea-
tures under two audio quality conditions. As shown in Table 5,
when AQ = 1, for each feature, there was a significant effect
of scores on features. However, when AQ = 0, for only tpsec
and lmscore features was there a significant effect of scores on
features. It is interesting to note that only the features related to
language-use still has significant effects between features and
scores. This suggests that audio quality degradation has a more
serious impact on features related to delivery aspect. An im-
plication of this finding is that for a robust speech assessment
system, features representing different aspects of language skill
are required.

feature F (4, 122)|AQ=0 F (4, 933)|AQ=1

wpsec 1.79, p=0.14 21.22, p=0
tpsec 4.02, p=0.004 34.22, p=0

amscore 0.80, p=0.53 20.93, p=0
lmscore 2.73, p=0.032 25.86, p=0

L6 0.168, p=0.95 7.65,p=0
S̄n 1.04, p=0.38 5.40, p=0

Table 5: one-way ANOVA analysis on features in two audio
quality conditions (bold p value indicates a significant effect
between scores on features using p < 0.05)

6. Discussion
With the improvement of ASR, a trend toward utilizing ASR
to automatically score speaking tests emerges in the language
testing field. This paper argues that a major obstacle to using
ASR to fully replace human raters, especially for high-stakes
test, is that ASR performs poorly when facing low quality au-
dio files. On 1065 audio files collected in the IEST practice
test, we annotated audio quality into two levels, i.e., satisfac-
tory (AQ=1) and poor (AQ=0). Under these two audio quality
conditions, human raters showed consistent rating performance.
However, the ASR performs significantly worse on poor audio
quality condition than on satisfactory audio quality condition.
We also investigated audio quality’s impact of the quality of
features extracted for the automatic scoring. Compared to fea-
tures extracted on satisfactory audio files, features extracted on
poor audio files have worse discriminative ability for scoring.

This study demonstrated the negative impact of audio qual-
ity on the ASR-based automatic speech assessment. To bet-
ter utilize ASR for speech assessment, we suggest that (1) au-

dio quality is monitored when recording test-takers’ responses
to make sure an acceptable quality is achieved, and (2) robust
speech recognition [9] technology that is less influenced by au-
dio quality may be utilized to improve the ASR’s robustness
to noises. In our future research, we plan to investigate using
such robust speech recognition technology to cope with noisy
responses in the automatic speech assessment.
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